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Abstrmt. A new method of construction of the Hamiltonian fur uniformly frustrated spin 
systems is proposed. In the XY case the method leads to the model which is equivalent to 
the well known uniformly frustratedXYmodel but it ismoregeneral than the latter because 
it makes sense for the three-dimensional spins as well. In this paper the method has been 
used in an atypical way because we study here two unreal spin systems. I n  the first system, 
spins are placed on the vertices of the polytope (35) which form, in the curved space S'. a 
two-dimensional triangular lattice with a fivefold symmetry ais.  In thesecond system, spins 
are placed on the vertices of the polytope {335) which form. in the CuNedspace S'. a three- 
dimensional lattice with icosahedral symmetry. In the same way as other workers, we are 
interested in the polytope (335) because of a topological similarity between fragments of it 
and fragmentsofamorphousmaterials. Using theMonteCarlo technique we havecalculated 
the temperature dependence of the mean energy and specific heat for both ferromagnetic 
andantiferromagnetic interactions. Theground statesof bothsystems have been found too. 
Moreover some low-lying metastable states have been found for the icosahedral spin system. 

1. Introduction 

The concept of frustration is very attractive for theoretically investigating spin glasses 
[l]. The frustration effect can be caused by competing, randomly distributed ferro- 
magnetic and antiferromagnetic interactions (such a case occurs, for instance, in dilute 
alloys as a consequence of the oscillatory nature of RKKY interactions [Z]). In math- 
ematical models, however, it is often assumed that the interactions instead of being 
randomly distributed have some more complicated distributions because the ran- 
domness makes the problem too difficult. For example, in a model proposed by Villain 
[%SI the interactions distributed in such a way that the number of ferromagnetic bonds 
on certain 'elementary polygons' is odd. One of the bonds then remains necessarily 
unsatisfied and consequently frustration arises. A modification of this model is the 
uniformly frustrated X Y  model [6] described by 

H = - J ~  E cos(e, - e, - Y,) (1) 
(irl 

where Oi is the angle of the planar spin at site i ,  (4) denotes the nearest-neighbour pairs 
and Yu is a bond angle such that the sum around a plaquette given by 

Yii, + YiJ2 + . . . + Yj"; = 2xf (2) 
is constant over the entire lattice. This idea is very convenient and often used. Unfor- 
tunately, it makes sense only in a case of two-dimensional ( X U )  spins. In this paper we 
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propose a more general construction. It is equivalent to the above method in the XY 
case but it makes sense for three-dimensional spins as well. Our idea is based on the 
observation by Toulouse [ l ]  that the frustration effect is very similar to the effect of 
parallel transport on vectors in curved space so that it may be visualized as giving 
curvature to the lattice. Thus we propose the following method of the construction of 
the frustrated spin model. First we construct a hypothetical crystal in a curved space 
topologically equivalent to the real crystal which we are interested in. This is possible if 
the curvature of the space is small enough in comparison with the dimensions of the 
crystal. Next we find the Hamiltonian of the spin system related to this hypothetical 
crystal, and finally we use it to describe our real spin system (in flat space). The 
frustrations introduced into the model by this means depend on the curvature of the 
space and the dimensions of elementary cells of the hypothetical crystal. Thus, if the 
curvature is constant and small enough in order that one may neglect differences in the 
shapes of the elementary cells, which appear as a result of the curvature of the space, 
we get the uniformly (in fact nearly uniformly) frustrated spin model. 

In this paper we have not exactly complied with the above scheme because the 
hypothetical crystals (in curved space) for which we have constructed the Hamiltonian 
do not have the topological counterparts in Euclidean space. First we consider the 
icosahedral crystal (on the three-dimensional sphere S’) called the polytope {335}. It is 
very interesting because of its symmetry. It is known that, although long-range icosa- 
hedral order is prevented by the properties of Euclidean space, local icosahedral order. 
which is the most advantageous 171, is preferred in some conditions. Such conditions are 
attained in glasses and one can show that small fragments of the amorphous materials 
are topologically similar to fragments of the polytope {335}. Thus, we should use our 
Hamiltonian as a Hamiltonian of the fragmentsof the amorphous spin system. Because, 
however, aselectionof the fragments and a connection between them and the fragments 
of the polytope is ambiguous [8], we have at the moment abandoned this idea. Instead, 
we studied the whole polytope. This is not new. Some workers have already tried to 
approximate some physical properties of amorphous materials by the corresponding 
properties of the polytope. Until now, structural [%lo], some electronic [lo]. acoustic 
and vibrational [ll-131. and melting [13, 141 properties of the polytope have been 
studied. In this paper we investigate some magnetic properties of the polytope {335}. 
We think that it may shed new light on the nature of amorphous spin systems because 
manyeffectsinmagneticglassesoftenresult from thefrustrationscaused bythe topology 
of the amorphous systems. For instance, the spin-glass behaviour of some amorphous 
structures with antiferromagnetically interacting ions (e.g. insulating transition-metal 
aluminosilicates 1151) arises from the topology of the structure. In the two-dimcnsional 
case this type of frustration exhibits the antiferromagnetic triangular XY model. Here, 
just as in the amorphous materials, the topology of the lattice makes it impossible to 
satisfy simultaneously all antiferromagnetic bonds. In the three-dimensional case, none 
of the usual regular lattices has this property but the {335} lattice does. 

Because it is very difficult to imagine effects connected with the curvature of three- 
dimensional space we have decided to study also a lattice in two-dimensional curved 
space. The lattice which we have chosen is the polytope {35}. We are interested in it  
because many simple properties of the unimaginable polytope (335) may be inferred by 
pure analogy to the properties of the polytope (35). On the vertices of the polytope we 
have placed the two-dimensional spins so that it is a specific XY system. 

In our model we have in mind nearest-neighbour interactions of Heisenberg type 
between classical spins. However, because the  scalar product of two vectors in curved 
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space is not defined for vectors fixed at different points, we must give the interpretation 
of the Hamiltonian. This is done in section 3. 

In this paper we confined ourselves to finding a ground state and temperature 
dependence of the mean energy (and then the specific heat) of both spin systems. The 
calculationswereperformed by the Montecarlo technique forboth positive and negative 
coupling constants. 

2. Polytopes (35) and (335) 

The polytope is a general term for such geometric forms as segment (in one-dimensional 
space), polygon (in two-dimensional space), polyhedron (in three-dimensional space), 
etc (in higher-dimensional spaces). The polytope {35} (the notation following that of 
Schlfdi, see [16]) is a polyhedron in which each vertex is surrounded by five triangles 
(denoted {3}). This polytope is known by the name icosahedron. It is one of the five 
Platonic solids. However, we look at the polytope in another way. Its faces, instead of 
being flat, are spherical triangles and they lie on the same sphere as vertices of the 
polytope (see figure 2). Because we are interested in a space which is the surface of a 
sphere, the polytope is a two-dimensional triangular lattice in the non-Euclidean curved 
space Sz. Unlike the usual triangular lattice in the flat space, in our lattice each vertex 
has five (instead of six) neighbours. The crystal consists of 12 vertices, 20 faces and 30 
edges, but it has no borders. Because of this, our model needs no boundary conditions. 

The set of five Platonic solids can be extended to analogical constructions in higher- 
dimensional spaces. In the four-dimensional space, one can construct six Platonic solids 
(regular polytopes). One of them is the polytope {335}. I t  is composed of tetrahedral 
cells (denoted {33}), with five tetrahedra per near-neighbour bond. As in the previous 
case, we are considering the construction on the sphere on which the vertices of the 
polytope lie; so our polytope is composed of spherical tetrahedra. Because the polytope 
fills the surface of a four-dimensional hyper-sphere S3, which is a three-dimensional 
curvedspace, i t  is a three-dimensionalcrystal without borders. It consistsof 120vertices, 
72.0 edges, 1200 faces and 600 cells. The crystal has icosahedral symmetry at every vertex 
(the orthogonal projection of one of the atoms with its 12 near-neighbours from S30nto 
Euclidean space can be seen later in figure 3). 

Usually one of the vertices of the polytope is placed at the point (0, 0, 0,R) [ 161 which 
we shall call the pole of sphere S3 (R is its radius). Such a choice of a coordinate system 
is, however, inconvenient for us because of the divergences in equation (10). In 
order to avoid them, we put the pole in the centre of one of the cells. In that case 
the vertices of the polytope can be displayed on 15 two-dimensional spheres 
(x' + y2 + zz = R2 - I+') to get polyhedra. The spheres are the sections of our three- 
dimensional sphere S3 by three-dimensional spaces parallel to X-Y-2 space [8, 161. 
Icosahedra are inscribed into the spheres w = 0, w = 20.2185R, w = +0.3536R, w = 
i0.5721R. Tetrahedra are inscribed into the spheres w = ?0.1350R, w = +0.7906R, 
w = k0.9256R. Dipyramids are inscribed into the spheres w = k0.7071R. By analogy, 
in our polytope {35} the centre of one of the faces is the pole of the sphere. Cutting the 
two-dimensional sphere (xz + y 2  + z2 = Rz) by two-dimensional spaces parallel to the 
X-Y space (i.e. planes parallel to the X-Y plane) we get one-dimensional spheres (i.e. 
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circles -x2 + yz = R2 - 2’). The vertices of the polytope lie on four circles. Triangles 
are inscribed into all these circles. 

3. Description of the model 

Let us consider a four-dimensional (three-dimensional) flat space with a Cartesian 
coordinate system x ,  y, z ,  w ( x .  y, z )  and a spherical coordinate system p, I), 6, Cp 
(p. 8, Cp). The relationships between the coordinates are as follows: 

x = p sin 1~ sin Bcos Cp 
y = p sin 

L = p sin qr cos 6 
sin Bsin Cp 

U’ = p cos ql 

for four-dimensional space, and 

x = p sin @cos Cp 

y = p sin @sin+ 

L = pcos 4 
( 3 6 )  

for three-dimensional space. In the above expressions, 0 G tp s n, 0 s B s n and 
0 s Cp < 2n. 

We define a four-dimensional sphere (three-dimensional sphere) with the radius R 
bytheequationx’ + y Z  + z’ + w’ = R’ (r2 + y z  + z2 =RZ).Thesurfaceofthesphere 
is the non-Euclidean three-dimensional space S3 (two-dimensional space S’). We can 
connect a coordinate system r ,  8, Cp ( r ,  @) with this space. Here r = Ryi (r = RB) is the 
geodcsic distance from agiven point to the reference point called the pole of the sphere, 
and tY, Cp (e) are the angle coordinates receiving the same values as the coordinates in 
equation (34 (equation (3b) ) .  Then the metric tensor of S3 is 

/ I  0 0 \ 

g ,  = 0 R’ sin’(r/R) 0 i o  0 R’ sin’(r/R) sinz 8 

and the metric tensor of S’ is 

In the curved space S3 or S’, respectively, we build the crystal topologically cor- 
responding to our real crystal in  Euclidean space. In the present work, we have built the 
tetrahedral close-packed structure on the sphere S3 (i.e. the polytope (335)) and the 
triangle close-packed structure on the sphere S’ (i.e. the polytope {35}). We recall that 
only fragments of these structures have their topologically counterparts in flat space. In 
both cases the counterparts are fragmentsof the three- and two-dimensional amorphous 
structures, respectively. 

The geodesic distance between near neighbours in the polytopes is equal to 0.6283R 
in the {335} and to 1.1072R in the {35}  polytope. In both cases we place classical spins 
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tangent to the sphere on the vertices of the polytope; so the spin dimensionality is 3 for 
the sphere S’and 2 for S2. We assume that the spins interact through nearest-neighbour 
Heisenberg interactions: 

where (AB) denotes near-neighbour pairs. Unfortunately, as is well known, in a curved 
space the scalar product of two vectors located at different points is undefined; thus we 
must specify what we understand by it. 

Let us consider two vectorsA and B at the points A and B in a curved space. Because 
the vectors are connected with differe-nt local coordinate systems, in order to calculate 
their scalar product, we must somehow find the components of one of these vectors in 
the local coordinate system of the other. The same situation appears also in the usual 
Euclidean space if we use some curvilinear (e.g. spherical) coordinate system (inci- 
dentally it should be noted that our coordinate systems in S3 and S2 resemble spherical 
( r ,  8, @) and polar ( r ,  @) coordinate systems, respectively). In that case we can work 
out the problem by moving one of the vectors via parallel transport from one point to 
the other. In a curved space this operation is not unequivocal because it depends on the 
path followed. However, from the physical point of view it seems that the best path is 
the geodesic line connecting both points because interactions are usually transmitted 
the shortest way. In this sense the scalar product of the vectorsA and B is determined 
by the following expression: 

A . B = g$a’&(A, B)bk (6) 

where a’and b‘ are the contravariant components of the vectorsA and B ,  gQ are the 
components of the metric tensor at the point A, and Pi(A, B) are the contravariant 
components of the basic vectors of the coordinate system at the point B after parallel 
transport to the point A along the geodesic line connecting these points. Because our 
metrictensor isdiagonal, we may, insteadof usingthe tensor componentsdofthe vector 
A,  use the physical components A’ = o’< (sum over i is not taken). Equation (6) is 
then given by 

where 

(do not sum over i and j in the above expression). Consequently our Hamiltonian (5) 
takes the following form: 

For the lattice on the sphere S2 (e.g. the polytope (35)) the matrix G can easily be found 
using spherical trigonometry (see figure 1) but for the lattice on S3 (e.g. the polytope 
{335}) we must find it numerically. First we find the p matrix for a given pair of vertices 
A and B.  In order to do this, we start from the basic vectors in B: &,(B), B,(B), B,(B). 
Then, we successively compute contravariant components of the vectors parallel to the 
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Fipre 1. Local coordinate systems at points A 
andBofthesphere.Theaxesx;,y; areobtained 
after parallel transport ofthe axesx,.y, along the 
geodesic line AB. The point 0 is the pole of the 
sphere. Theanglepis theangleofrotation matrix 
GAB (see text). 

first, point by point, in N points on the geodesic line BA in accordance with the following 
expressions: 

e;(k)  = e;(k - 1) + Rsin(r/R) cos(r/R) [ey(k - 1) Axb&) 

ef(k) = ef (k  - 1) - (I/!?) cot(r/R) - 1) Axx'@) + e;(k - 1) Axxa(k) ]  

ef(k) = e?(k - 1) - ( l / R )  cot(r/R) [ef(k - 1) h r ' ( k )  + e:(k - 1) A.rx'(k)] 

- cot @ [ e f ( k  - 1) Axe(k)  + ef(k - 1) Ax@(k) ]  

+ sin2 6 e f ( k  - 1) Ax+(k)]  

+ sin @cos 6 eF(k - 1) h r @ ( k )  (10) 

where i = 1 , 2 , 3 ;  k = 1 . 2 , .  . ., N (in our calculationsN = 500); ei(0) = 1, eP(0) = 0, 
et(@ = 0; e@) = 0, e!@) = 1. = 0; e;@) = 0, e!@) = 0, e $ @ )  = 1; 
Ax(k)  = x k  - xk is the vector pointing to the kth point on the geodesic line con- 
necting the points A and B; xo = xB, xN = xA. 

Finally we multiply the elements of the p matrix by the factor appearing in equation 

When thecurvatureof the spaceapproacheszero(thespace becomesflat) thematrix 
(8). 

G approaches the rotation matrix 

s 6 B  C@BA s 6 A  + c 6 B  c8A s 6 B  c @ B A  c6A - C 6 B  s 6 A  s6B @BA 

~ $ 5  = CBE c@BA s B A  - sf+B c@A c ~ B  C@BA cf'A + S@B s 6 A  COB 

- @ J B A  S ~ A  -S@BA C ~ A  i 
(where s = sin and c = cos) in the three-dimensional case, and 

in the two-dimensional case. Here QBA = QB - @A and SA, @A and 6B, are the 
spherical coordinates of the points A and B. The Hamiltonian (9) with the matrix (lla) 
is equivalent to the usual Heisenberg Hamiltonian, and with the matrix (l lb) it  is 
equivalent to the usual XY Hamiltonian. 
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Below, for comparison, we give two G matrices for a pair of points A(rA = 0.388, 
tYA = 0.11&, @A = Z) and B(rB = 0.388, = 0.116~) and for a pair of 
pointsC(rc = 2.356, eC = 0.200n, @C = 0.176~) andD(rD = 2.754, = 0 .304~ .  c$" = 
1.750~) on the sphere S' with-R = 1 (the left-hand matrices) and in the flat space (the 
right-hand matrices): 

= OSOOZ, 

-0.264 -0.895 -0.366 -0.333 -0.873 -0.357 

G f B =  -0.956 0.292 -0.026 G;' = -0.934 0.357 ( 0.131 0.343 -0.932) 

(-0.516 0.803 0.297) 

( 0.127 0.333 -:,934) 

( 0.572 0.787 0.230) 

0.676 0.169 0.717 0.577 -0.lS8 -0.795 

GFD = 0.526 0.571 -0.631 GF" = -0.583 0.587 -0.562 , 

Note that our matrix C is very similar to  the matrix (1 1) for the pair of points lying near 
the pole of the sphere, where sin(r/R) r/R. 

For a crystal on the sphere S'. the matrix C can be expressed as a rotation matrix 

For the polytope 135) the angle l/lAB takes the values 0, *n/S and * 3 ~ / 5  depending on 
which pair of near-neighbour vertices of the polytope is considered (in the case of the 
flat two-dimensional space defined by the polar coordinates r, @ the angles yAB = 

- @A and for the pairs of points with the same coordinates r, @ as our vertices we get 
the values 0, -Cx/3. 222/3). 

Using the form (12), the Hamiltonian (9) for the crystal on Sz can be rewritten as 
follows: 

where BA is the angle which the planar spin at the point A makes with an axis parallel to 
the local meridian (see figure 1). If deformations of cells of our hypothetical crystal, 
caused by the curve of the space, are very small (i.e. the curvature is very small), the 
frustrations of each elementary cell are approximately equal because they depend on 
the curvature of the space (which is constant here) and on the surface of the cells (which 
are about constant). In the case of polytope {35}, all cells are identical so that the 
frustration 

*AB Y B C  *CA = 2nf (14) 

is exactly the same for every elementary triangle and it is equal to f = h. 
The next step of the proposed method is the use of the Hamiltonian (9) to the real 

crystal which is topologically similar to the hypothetical crystal in curved space. Now (in 
Euclidean space) we may relate the spins to the global coordinate system instead of 
relating them to the local coordinates. A transformation of the Hamiltonian (9) to the 
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Figure 2. The lowest-energy configuratiun of the spin system on the polytope {3S) lor (a) 
positiveand (b)-(Onegativccouplingconstants.The plusand minussignsin(b)-(Oindicate 
the helicityof each triangle. The signs in the circles concern the unseen triangles. 

Cartesian coordinatesystem modifies the matrixc. Forexample, in the two-dimensional 
case, the matrix (12) takes the form 

GAB = (15) 
c o S ( V A B  + @ A B )  

- s i n ( q A B  + @ A B )  

s i n ( V A B  + @ A B )  

c o s ( v A B  + @ A B )  
" 

where @AB = QA - @B and QA, QB are the angular coordinates of the points A and B. 
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Figure 3. The orthogonal projection of a 'spherical icosahedron' from S? onto Euclidean 
space: (a). (b) Jo > 0; (c). (d) I,, < 0. The spin configurations relate to the ground state and 
the low-lying metastable state of the polytope {335). The energies of the central spin are 
equal to(a) -11.97J,,.(b) -10.47J,,,(c) -3.221J01and(d) -2.32[Jnl. 

Note that the transformation does not change the frustration since the sum of the angles 
QAB around a plaquette is equal to zero. 

Asonecansee,inthecaseoftwo-dimensionalspins, themodelconstructedaccording 
to that scheme is equivalent to the uniformly frustrated X Y  model described by the 
Hamiltonian (1). The Hamiltonian (9), however, is superior to the Hamiltonian (1). 
The superiority consists of the fact that the former makes sense for both two- and three- 
dimensional spins while the latter may be used only in the X Y  case. 

As was mentioned in section 1, we do not pass to the Euclidean space in the present 
work. Here, wehave usedthe Hamiltonian(9)direalyforhypotheticalcrystalsincurved 
space. 

4. Monte Carlo simulation 

We have studied the behaviour of the Hamiltonian (9) for bothsystems (i.e. the polytopes 
{35} and {335}) by the Monte Carlo simulation. In order to find the ground state, we 
started from a random spin configuration and then, stepping sequentially through the 



1173 J Kurzyk 

lattice, we turned each encountered spin to minimize its energy. In this procedure each 
spin was turned over 1000 times and finally all spins had, almost, the most profitable 
directions with respect to their environments. For the polytope (335). the quantity 

.- ~ ~~ ~~, 
~~ ~ ~~ ~~ ~~ ~~ ~~~ ~ ~ ~~ n 

where E, is the energy of the ith spin and E,,,, is its actual minimal energy was about 

The minimal energy of the polytope {35} is equal to -1.655J,, per spin for ferro- 
magnetic interactions and -1.1181JoI per spin for antiferromagnetic interactions. Thus 
the system is frustrated for both positive and negative bonds. I n  the lowest-energy 
configuration no spin is parallel (for Jo > 0) or antiparallel (for Jo < 0) with respect to 
each of its nearest neighbours. In the case of a positive coupling constant lhe ground- 
state configuration is, energetically, heterogeneous; thc spins located near the poles 
have the energy -2.00W0 and each of the remaining six spins have the energy -4.61U0 
(in the ferromagneticstate it should be -Yo). For a negativecoupling constant the spin 
energy is not differentiated; each of the spins has the energy -2.2361J01. 

I Jot, 
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Figure 5. Mean energy per spin versus temperature for the (335) spin system with (a) 
positive and (b) negative couplings. The full curves are composed of straight lines between 
neighbouring data points. 

Like the usual antiferromagnetic planar model on a triangular lattice [17] or other 
regularly frustrated systems [18] the ground state of our antiferromagnetic {35} system 
has an extra discrete degeneracy, in addition to the invariance under an overall rotation 
of the spins. The full set of ground states consists of five disconnected manifolds (the 
usual antiferromagnetic triangular lattice has a higher symmetry than ours and therefore 
its ground state has only two topologically distinct classes of patterns) characterized by 
different ‘helicities’. The helicity of a triangle is defined as X(Ae/Zz), where A 0  is the 
smallest clockwise change in an angle when the triangle is traversed in a clockwise 
direction (if two spins happen to be parallel or antiparallel, the helicity is defined to 
be zero). The ground-state configurations of {35} for positive and negative coupling 
constants are shown in figure 2(a) and figures 2(b)-2(f), respectively. In these figures 
the plus and the minus signs indicate the helicities +0.9 and -0.6. In the configuration 
with the lowest energy for Jo > 0 (figure Z(a)) the helicity of all the triangles are -0.1 
except for two polar triangles the helicity of which is equal to 0.9. Naturally the sum of 
the helicities of all the triangles is zero for all the above-mentioned cases. 

The ground-state energy of the polytope {335} is -5.455J0perspin for ferromagnetic 
and -1.7261J01 per spin for antiferromagneticinteractions. Inaccordance with what has 
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Figurc6. Specific heat per spin versus temperature lor the (35)spin system with (a )  positive 
and (b) negative couplings. The smooth curve5 through the data are drawn as guides to the 
eye and ace not the result of any lheoretical computation. 

already been shown by Wannier [ 191. the ground-state energy for the antiferromagnetic 
case is only about a third of that for the ferromagnetic case. 

In the case of positive J , ,  the energy of the spins increases moderately as we remove 
away from the 'equator'. The 12 spins on the equator have the energy - 11.975,, (neigh- 
bouring spins are almost parallel to the central spin) and the energies of spins on the 
other 'layers' (see section 2) are -11.93Ju (eight spins), -11.88Jo (24 spins), -11.715, 
(24 spins), -11.135" (24 spins), -10.145, (12 spins), -8.99J0 (8 spins) and -5.37/,, (8 
spins). For the negative coupling constant in the lowest-energy configuration the spins 
have the following energies: -3.781Jul (20 spins), -3.5515,1 (40 spins), -3.401J01 (20 
spins) and -3.22/J01 (40spins). 

We have not investigated the discrete degeneracy and the helicity of the ground state 
yet. The problem of the helicity (and especially the question of whether the system 
sustains the helicity) is very interesting. In two-dimensional and most probably in 
three-dimensional XY spin glasses the helical ordering occurs only at T = 0 [NI, but a 
numerical study by Henley [20] suggested that a Heisenberg spin glass could sustain 
helicity. 

Looking for the ground state we have found, in both coupling cases, a low-lying 
metastable state. For the positive~Jo, the energy of this state is -5.Z63,per spin and for 
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kgT/lJol 

Figure 7. Specific heat per spin versus temperature for the 1335) spin system with (a) positive 
and (b) negative couplings. The smooth curves through the data are drawn as guides to the 
eye and are not the result of any theoretical compuration. 

thenegativeJ"it is -1.67415,lperspin. Thefirststateisenergeticallyveryhomogeneous, 
even more homogeneous than the ground state. In this state each spin has the energy 
-10.475,. The second state is very heterogeneous. The spin energy varies almost uni- 
formly from about -2.2[5,1 to about -4.61Jol. Of these two states the former is con- 
siderably easier to achieve by Monte Carlo simulation. It follows from this that the 
former state is more stable than the latter (its potential barrier is higher). 

Certainly the system has more than these two local minima. For example once 
during all runs the system with antiferromagnetic interactions attained a metastable 
configuration with energy equal to -1.6441J01 per spin. Perhaps the {35} system has 
metastable configurations too, but we have not studied it. 

Figure 3 shows the orthogonal projection of one of the spins with its 12 near neigh- 
bours from S3 onto the Euclidean space. It is a fragment of the polytope (335) in the 
ground state and in the metastable state for the ferromagnetic (figures 3(a) and 3(b)) 
and antiferromagnetic (figures 3(c) and 3(d)) couplings. The energies of the central spin 
are -11.97J0, -10.47J0, -3.2215,1 and -2.321501 in figures 3(a), 3(b), 3(c) and 3(d) 
respectively. 

Both the lowest-energy configuration and the metastable configurations are non- 
collinear. Considering the curvature of our lattice it is impossible to compare the total 
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spin configurationsofour crystal with configurationsof any realstructures but it is visible 
that locally they resemble the speromagnetic and the asperomagnetic structures for 
ferromagnetic and antiferromagnetic interactions, respectively. The spin correlation 
functions(&. SI)/SZfor the first shellof neighboursareequalto0.909(thegroundstate) 
and 0.873 (the metastable state) for ferromagnetic interactions and to -0.288 (the 
ground state) and -0.279 (the metastable state) for antiferromagnetic interactions. 

The temperature dependence of the average energy of both systems has been studied 
using the standard Metropolis method. As was mentioned in section 2 the systems 
need no boundary conditions since they have no borders. Data for the polytope (35) are 
the result of runs averaged over 5 X 104-105 Monte Carlo steps per spin with 3 X lo3 
initial passes discarded for equilibrium. For the polytope {335} each averaging was 
performed over 5 x 10’ passes with the initial lo’discarded. 

Figures 4 and 5 exhibit our results for the temperature dependences of mean energy 
for both systems for the positive and negative interactions. Figure 4 relates to the (35) 
system and figure 5 relates to  the {335} system. As shown in these figures the energy 
curve is very smooth so that we have approximated the value of the specific heat at 
a temperature T between two neighbouring temperatures T ,  and T,  by ( E ,  - E2)/ 
(7, - T2). To check the method we also used a cubic-spline fit to the values of the mean 
energy and differentiated it to  find the specific heat. The two methods give the same 
results within the uncertainty of the data. 

The specific-heat results are shown in figures 6 and 7. Since our system is classical, 
the specific heat does not vanish for T+ 0. We have found a specific-heat peak for all 
cases. The specific heat of the {35} system has a peak at a temperature equal to about 
0.9Jo/kR for a positive coupling constant and 0.251Jol/kR for a negative coupling 
constant. The curve of specific heat for J, ,  > 0 is very rounded so that the temperature 
of the peak is less certain than for the other cases. For the polytope (335) the specific- 
heat peak is at a temperature 2.4Ju/kB for Jo > 0 and at 0.281Jol/kB for J ,  < 0. For both 
systems in the antiferromagnetic case the specific-heat peak is sharper. its height is 
greater and the temperatureof the peakisconsiderablylower than for the ferromagnetic 
case. 

5. Summary 

The main result of this paper is the Hamiltonian (9) which describes the uniformly 
frustrated spin systems. It may be used not only in the X Y  case, as the Hamiltonian (l), 
but in the Heisenberg case as well. The elements of the matrix G, which occurs in this 
Hamiltonian, should be calculated according to the scheme proposed in section 3. In 
order to do this, we must first build, in curved space, the topological counterpart of our 
crystal. In this paper, however. insteadofstudyingrealcrystals, we havestudieddirectly 
hypothetical crystals in curved space-the polytopes {35} and {335}. We think that some 
properties of the polytope {335} relate to the properties of some amorphous materials 
because of the topological compatibility between the local structures of the glasses and 
the polytope. For example, the magnetic order of the ground state (and the metastable 
states), which we have found for the polytope, resemble locally the speromagnetic 
structure (for ferromagnetic interactions) and asperomagnetic structure (in the anti- 
ferromagnetic case). Both non-collinear forms of magnetic order are typical of the 
amorphous magnetic systems. 
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